Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(5): 114169, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678562

RESUMEN

Sympathetic innervation of brown adipose tissue (BAT) controls mammalian adaptative thermogenesis. However, the cellular and molecular underpinnings contributing to BAT innervation remain poorly defined. Here, we show that smooth muscle cells (SMCs) support BAT growth, lipid utilization, and thermogenic plasticity. Moreover, we find that BAT SMCs express and control the bioavailability of Cxcl12. SMC deletion of Cxcl12 fosters brown adipocyte lipid accumulation, reduces energy expenditure, and increases susceptibility to diet-induced metabolic dysfunction. Mechanistically, we find that Cxcl12 stimulates CD301+ macrophage recruitment and supports sympathetic neuronal maintenance. Administering recombinant Cxcl12 to obese mice or leptin-deficient (Ob/Ob) mice is sufficient to boost macrophage presence and drive sympathetic innervation to restore BAT morphology and thermogenic responses. Altogether, our data reveal an SMC chemokine-dependent pathway linking immunological infiltration and sympathetic innervation as a rheostat for BAT maintenance and thermogenesis.

2.
iScience ; 27(1): 108682, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38235323

RESUMEN

White adipose tissue (WAT) development and adult homeostasis rely on distinct adipocyte progenitor cells (APCs). While adult APCs are defined early during embryogenesis and generate adipocytes after WAT organogenesis, the mechanisms underlying adult adipose lineage determination and preservation remain undefined. Here, we uncover a critical role for platelet-derived growth factor receptor beta (Pdgfrß) in identifying the adult APC lineage. Without Pdgfrß, APCs lose their adipogenic competency to incite fibrotic tissue replacement and inflammation. Through lineage tracing analysis, we reveal that the adult APC lineage is lost and develops into macrophages when Pdgfrß is deleted embryonically. Moreover, to maintain the APC lineage, Pdgfrß activation stimulates p38/MAPK phosphorylation to promote APC proliferation and maintains the APC state by phosphorylating peroxisome proliferator activated receptor gamma (Pparγ) at serine 112. Together, our findings identify a role for Pdgfrß acting as a rheostat for adult adipose lineage confinement to prevent unintended lineage switches.

3.
Nat Commun ; 14(1): 1806, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37002214

RESUMEN

Perivascular adipocyte progenitor cells (APCs) can generate cold temperature-induced thermogenic beige adipocytes within white adipose tissue (WAT), an effect that could counteract excess fat mass and metabolic pathologies. Yet, the ability to generate beige adipocytes declines with age, creating a key challenge for their therapeutic potential. Here we show that ageing beige APCs overexpress platelet derived growth factor receptor beta (Pdgfrß) to prevent beige adipogenesis. We show that genetically deleting Pdgfrß, in adult male mice, restores beige adipocyte generation whereas activating Pdgfrß in juvenile mice blocks beige fat formation. Mechanistically, we find that Stat1 phosphorylation mediates Pdgfrß beige APC signaling to suppress IL-33 induction, which dampens immunological genes such as IL-13 and IL-5. Moreover, pharmacologically targeting Pdgfrß signaling restores beige adipocyte development by rejuvenating the immunological niche. Thus, targeting Pdgfrß signaling could be a strategy to restore WAT immune cell function to stimulate beige fat in adult mammals.


Asunto(s)
Adipocitos , Adipogénesis , Masculino , Ratones , Animales , Adipogénesis/genética , Adipocitos/metabolismo , Transducción de Señal , Tejido Adiposo Blanco/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Termogénesis/genética , Mamíferos/metabolismo
4.
Commun Biol ; 5(1): 584, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35701601

RESUMEN

Beige adipocytes are induced by cold temperatures or ß3-adrenergic receptor (Adrb3) agonists. They create heat through glucose and fatty acid (FA) oxidation, conferring metabolic benefits. The distinct and shared mechanisms by which these treatments induce beiging are unknown. Here, we perform single-nucleus assay for transposase-accessible chromatin sequencing (snATAC-seq) on adipose tissue from mice exposed to cold or an Adrb3 agonist to identify cellular and chromatin accessibility dynamics during beiging. Both stimuli induce chromatin remodeling that influence vascularization and inflammation in adipose. Beige adipocytes from cold-exposed mice have increased accessibility at genes regulating glycolytic processes, whereas Adrb3 activation increases cAMP responses. While both thermogenic stimuli increase accessibility at genes regulating thermogenesis, lipogenesis, and beige adipocyte development, the kinetics and magnitudes of the changes are distinct for the stimuli. Accessibility changes at lipogenic genes are linked to functional changes in lipid composition of adipose. Both stimuli tend to decrease the proportion of palmitic acids, a saturated FA in adipose. However, Adrb3 activation increases the proportion of monounsaturated FAs, whereas cold increases the proportion of polyunsaturated FAs. These findings reveal common and distinct mechanisms of cold and Adrb3 induced beige adipocyte biogenesis, and identify unique functional consequences of manipulating these pathways in vivo.


Asunto(s)
Adipocitos Beige , Redes Reguladoras de Genes , Adipocitos Beige/metabolismo , Tejido Adiposo , Animales , Cromatina/metabolismo , Ratones , Termogénesis/genética
5.
J Orthop Res ; 36(6): 1614-1623, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29227579

RESUMEN

Obese and type 2 diabetic (T2D) patients have a fivefold increased rate of infection following placement of an indwelling orthopaedic device. Though implant infections are associated with inflammation, periosteal reactive bone formation, and osteolysis, the effect of obesity/T2D on these complicating factors has not been studied. To address this question, C57BL/6J mice were fed a high fat diet (60% Kcal from fat) to induce obesity/T2D, or a control diet (10% Kcal from fat) for 3 months, and challenged with a transtibial pin coated with a bioluminescent USA300 strain of S. aureus. In the resulting infected bone, obesity/T2D was associated with increased S. aureus proliferation and colony forming units. RNA sequencing of the infected tibiae on days 7 and 14 revealed an increase in 635 genes in obese/T2D mice relative to controls. Pathways associated with ossification, angiogenesis, and immunity were enriched. MicroCT and histology on days 21 and 35 demonstrated significant increased periosteal reactive bone formation in infected obese/T2D mice versus infected controls (p < 0.05). The enhanced periosteal bone formation was associated with increased osteoblastic activity and robust endochondral ossification, with persistant cartilage on day 21 that was only observed in infected obesity/T2D. Osteolysis and osteoclast numbers in obesity/T2D were also significantly increased versus infected controls (p < 0.05). Consistent with an up-regulated immune transcriptome, macrophages were more abundant within both the periosteum and the new reactive bone of obese/T2D mice. In conclusion, we find that implant-associated S. aureus osteomyelitis in obesity/T2D is associated with increased inflammation, reactive bone formation, and osteolysis. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1614-1623, 2018.


Asunto(s)
Diabetes Mellitus Tipo 2/complicaciones , Inflamación/etiología , Obesidad/complicaciones , Osteogénesis , Osteólisis/etiología , Infecciones Relacionadas con Prótesis/etiología , Infecciones Estafilocócicas/etiología , Animales , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Staphylococcus aureus
6.
Infect Immun ; 85(6)2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28320836

RESUMEN

Obesity and associated type 2 diabetes (T2D) are important risk factors for infection following orthopedic implant surgery. Staphylococcus aureus, the most common pathogen in bone infections, adapts to multiple environments to survive and evade host immune responses. Whether adaptation of S. aureus to the unique environment of the obese/T2D host accounts for its increased virulence and persistence in this population is unknown. Thus, we assessed implant-associated osteomyelitis in normal versus high-fat-diet obese/T2D mice and found that S. aureus infection was more severe, including increases in bone abscesses relative to nondiabetic controls. S. aureus isolated from bone of obese/T2D mice displayed marked upregulation of four adhesion genes (clfA, clfB, bbp, and sdrC), all with binding affinity for fibrin(ogen). Immunostaining of infected bone revealed increased fibrin deposition surrounding bacterial abscesses in obese/T2D mice. In vitro coagulation assays demonstrated a hypercoagulable state in obese/T2D mice that was comparable to that of diabetic patients. S. aureus with an inactivating mutation in clumping factor A (clfA) showed a reduction in bone infection severity that eliminated the effect of obesity/T2D, while infections in control mice were unchanged. In infected mice that overexpress plasminogen activator inhibitor-1 (PAI-1), S. aureusclfA expression and fibrin-encapsulated abscess communities in bone were also increased, further linking fibrin deposition to S. aureus expression of clfA and infection severity. Together, these results demonstrate an adaptation by S. aureus to obesity/T2D with increased expression of clfA that is associated with the hypercoagulable state of the host and increased virulence of S. aureus.


Asunto(s)
Coagulasa/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Obesidad/complicaciones , Osteomielitis/patología , Infecciones Estafilocócicas/microbiología , Absceso/patología , Animales , Anticuerpos Antibacterianos/genética , Anticuerpos Antibacterianos/metabolismo , Coagulasa/genética , Diabetes Mellitus Tipo 2/microbiología , Modelos Animales de Enfermedad , Fibrinógeno/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/microbiología , Osteomielitis/microbiología , Análisis de Secuencia de ARN , Activación Transcripcional , Regulación hacia Arriba , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...